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a b s t r a c t 

Due to the unpredictability and complexity properties, chaotic maps are widely applied in security, com- 

munication, and system control. Existing one-dimensional (1D) chaotic maps can be easily predicted and 

high-dimensional (HD) ones have more complex structures and higher computation costs. In order to 

enhance the chaotic performance, this paper proposes a new two-dimensional infinite collapse map (2D- 

ICM). Compared with existing 2D chaotic maps, 2D-ICM has better ergodicity, hyperchaotic property, un- 

predictability, and a wider chaotic region. To investigate its application, we further propose an image 

encryption algorithm using 2D-ICM. Simulation demonstrates that the proposed image encryption algo- 

rithm has excellent performance for protecting various kinds of images. 

© 2020 Elsevier B.V. All rights reserved. 
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. Introduction 

With the rapid improvement of network communication and

ultimedia techniques, an increasing number of digital images are

tored, copied, and transmitted over various types of third-party

latforms or unsecured channels. Since these images often carry

rivate or sensitive information, image security has received in-

reasing attention recently [1–3] . To ensure security of digital im-

ges, many image encryption algorithms have been developed in-

luding data stream encryption [4,5] , multimedia scrambling [6] ,

ave perturbation [7] , reversible cellular automata [8] , bitplane-

ased image encryption [9,10] , and chaos-based image encryption

lgorithms [11–13] . Among these algorithms, the chaos-based im-

ge encryption methods have become a compelling way for im-

ge encryption because of the attractive properties of chaotic maps

uch as ergodic, complexity, and sensitivity [14–17] . They also

how good secure performance and low computation costs [18–20] .

In fact, the security of chaos-based image encryption ap-

roaches is heavily dependent on the chaos performance of their

haotic maps. Existing chaotic maps can be divided into two cat-

gories: one-dimensional (1D) and high-dimensional (HD) chaotic

aps. For 1D chaotic maps, they possess simple trajectories and

ew variables, and thus their initial conditions and orbits can

e easily deduced [21,22] . Moreover, the chaos performance of a

haotic map will be decreased or vanished when its parameter was

n some intervals [23,24] . To cope with this problem, several HD

haotic maps with hyper-chaotic property were designed [23–26] .
∗ Corresponding author. 
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he simulation results show that these existing HD chaotic maps

ail to pass some security tests for image encryption [25] . They

lso have more complex structures and higher computation costs

ith expensive hardware implementation. Some HD chaotic maps

ppear non-chaotic or low-chaotic performance in specific specific

ntervals [23,24,27] . Therefore, it becomes meaningful to design

 chaotic map that has unpredictable and robust chaotic perfor-

ance with a low computation cost. 

In this paper, we propose a two-dimensional (2D) hyper-chaotic

ap, called 2D infinite collapse map (2D-ICM). 2D-ICM is con-

tructed using two 1D infinite collapse maps with the modulation

peration. Performance evaluation and comparison are carried out

sing the trajectory distribution, Lyapunov exponent, correlation

imension, and Kolmogorov entropy. The results show that 2D-

CM has more unpredictable characteristics, better ergodicity, and a

arger chaotic range than several state-of-the-art 2D chaotic maps.

wing to these excellent hyper-chaotic properties of 2D-ICM, we

lso propose a 2D-ICM based image encryption algorithm (ICMIE).

pplying the chaotic sequences generated by 2D-ICM, ICMIE per-

orms the confusion and diffusion operations to encrypt images.

imulation results and security analysis show that ICMIE can effi-

iently encrypt various types of images with a high level of secu-

ity. 

The rest of this paper is organized as follows. Section 2 pro-

oses 2D-ICM and evaluates its chaotic performance. Section 3 in-

roduces ICMIE and gives experimental results of different kinds of

mages. Section 4 analyzes security of ICMIE. Section 5 reaches a

onclusion. 

https://doi.org/10.1016/j.sigpro.2020.107457
http://www.ScienceDirect.com
http://www.elsevier.com/locate/sigpro
http://crossmark.crossref.org/dialog/?doi=10.1016/j.sigpro.2020.107457&domain=pdf
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2. 2D infinite collapse map 

This section introduces the 2D infinite collapse map (2D-ICM)

and investigates its chaotic behaviors. 

2.1. Mathematical definition 

An infinite collapse map is a 1D chaotic map that has the

best chaotic performance among existing 1D chaotic maps [28] . Its

mathematical definition is given by 

x n +1 = sin 

(
a 

x n 

)
, (1)

where x n and x n +1 are its input and output, and the control pa-

rameter a � = 0. 

A traditional 1D chaotic map usually has a simple structure and

its trajectory is easy to be predicted using some estimation tech-

nologies [19] . To tackle with this problem, we propose a 2D infi-

nite collapse map (2D-ICM) by integrating two 1D infinite collapse

maps with different parameters, which is defined by { 

x n +1 = sin 

(
a 
y n 

)
· sin 

(
b 
x n 

)
, 

y n +1 = sin 

(
a 
x n 

)
· sin 

(
b 

y n 

)
, 

(2)

where the control parameters a and b are real numbers, a � = 0,

b � = 0. From the definition of 2D-ICM, we can see that the magni-

tude of an original infinite collapse map sin ( a / x ) is modulated by

another infinite collapse map sin ( b / y ) with different parameters. 

2.2. Performance evaluation 

To evaluate chaotic behaviors of 2D-ICM, we adopt several mea-

sures including the attractor, Lyapunov exponent, correlation di-

mension, and Kolmogorov entropy in this section. Moreover, the

proposed 2D-ICM is compared with five existing 2D chaotic maps,

i.e. 2D Logistic map (2D-Logistic) [29] , 2D Sine Logistic modu-

lation map (2D-SLMM) [25] , 2D Logistic-adjusted-Sine map (2D-

LASM) [26] , 2D Sine modulation map (2D-SIMM) [23] , and 2D

Logistic cascade map (2D-LICM) [24] . Here we simplify the defi-

nitions of these maps and select their parameters for their best

chaotic performance. Their simplified definitions are shown as fol-

lows. 

For 2D logistic map, it contains only one parameter λ, sim-

ply replacing it by a , then the definition can be rewritten as

Eq. (3) [29] , {
x n +1 = a (3 y i + 1) x i (1 − x i ) , 

y n +1 = a (3 x i +1 + 1) y i (1 − y i ) . 
(3)

For 2D-SLMM, the best chaotic performance appears at β = 3 ,

after replacing the other parameter α by a , the definition is rewrit-

ten as Eq. (4) [25] , {
x n +1 = a (( sin (πy i ) + 3) x i (1 − x i ) , 

y n +1 = a (( sin (πx i +1 ) + 3) y i (1 − y i ) . 
(4)

For 2D-LASM, it contains only one parameter μ, simply replac-

ing it by a , then the definition can be rewritten as Eq. (5) [26] , {
x n +1 = sin (πa (y i + 3) x i (1 − x i )) , 

y n +1 = sin (πa (x i +1 + 3) y i (1 − y i )) . 
(5)

For 2D-SIMM, the best chaotic performance appears at b = 5

and the other parameter is a , the definition can be rewritten as

Eq. (6) [23] , {
x n +1 = a sin (πy i ) sin (5 /x i ) , 

y n +1 = a sin (πx i +1 ) sin (5 /y i ) . 
(6)
p  
For 2D-LICM, the best chaotic performance appears at a = 0 . 6 ,

fter replacing the other parameter k by a , the definition can be

ewritten as Eq. (7) [24] , 

x n +1 = sin ( 21 / (0 . 6(y i + 3) ax i (1 − ax i )) ) , 

y n +1 = sin ( 21 / (0 . 6(ax i +1 + 3) ax i (1 − y i )) ) . 
(7)

.2.1. Attractor 

The attractor of a chaotic map is a set of numerical values to-

ard which the map tends to evolve under a large variety of ini-

ial points. For a 2D chaotic map, its attractor can be described

y a group of points that occupy a region in a 2D phase space.

 chaotic map with better chaotic performance usually has an

ttractor that is geometrically complicated and occupies a large

egion in the phase space. To visually demonstrate the attrac-

ors of these chaotic maps mentioned above, we choose (0.6, 0.3)

s the initial point and iterate 40 0 0 0 times for each map re-

pectively. These 40 0 0 0 generated points of each map are then

lotted in the 2D space to represent the attractor of each map.

ig. 1 compares the attractors of 2D-ICM with five 2D chaotic

aps. 

As can be seen in Fig. 1 (f), the attractor of 2D-ICM fully occu-

ies a 2D phase space ranging (−1 , 1) . This means that 2D-ICM can

roduce more unpredictable results and has the better or compet-

tive ergodicity property than these existing maps. 

.2.2. Lyapunov exponent (LE) 

Lyapunov exponent is used to evaluate the chaotic properties

f a dynamical system. It is a quantitative measure of the separa-

ion rate of two infinitely close trajectories. For a high-order dy-

amical system, there are more than one Lyapunov exponents and

he number of Lyapunov exponents is equal to the order of the

ystem, since different orientations of the initial separation vector

ill result in different separation rates. The Lyapunov exponent of

 dynamical system can be used to determine whether the system

s chaotic or not. A system with a positive LE is considered to be

haotic, and a system with more than one positive LE is consid-

red to be hyper-chaotic. A hyperchaotic system will have an un-

redictable and good chaotic performance. 

In our simulation results, the algorithm in [30] is applied to es-

imate the LE values. A 2D chaotic map generally has two LE val-

es. If both of its LE values are larger than 0, this map will be

onsidered as a hyper-chaotic map. The LE values of the proposed

D-ICM are shown in Fig 2 .(a). It can be clearly seen that 2D-ICM

s hyper-chaotic among the entire parameter range. This means

hat its trajectory is extremely hard to be deduced. Fig. 2 (b) and

c) show the comparison results between the larger and smaller

E values of various 2D chaotic maps. Since different maps have

ifferent parameter ranges. We normalize all the ranges of their

arameters into [0, 1]. From the results, we can see that the LE

alues of the proposed 2D-ICM are the largest one among these

ompeting maps in both comparisons of larger and smaller LE val-

es. This shows its better performance compared to other existing

aps. Another important property of 2D-ICM is that its LE values

ncrease as each of the its parameters increases. It means that we

an obtain as large LE values as possible by adjusting its parame-

ers. 

.2.3. Correlation dimension (CD) 

In chaos theory, the correlation dimension is a type of fractal

imension that measures the dimensionality of the space occupied

y a set of random points. It can be used to characterize the at-

ractor strangeness (degrees of freedom) of a dynamic system [30] .

Here we use the algorithm in [31] to estimate the CD values.

D is a kind of fractal dimension that describes the shape com-

lexity of an object. It is expected that a 2D object should have a
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Fig. 1. Attractors of different 2D chaotic maps: (a) 2D-logistic-map; (b) 2D-SLMM; (c) 2D-LASM; (d) 2D-SIMM; (e) 2D-LICM; (f) the proposed 2D-ICM. 

Fig. 2. Lyapunov exponent distributions of different 2D chaotic maps: (a) 2D-ICM ( b = 21 ); (b) comparison of larger LE values of various 2D maps; (c) comparison of smaller 

LE of various 2D maps. In (b) and (c) k = 5 × (a − 0 . 99) for 2D-logistic-map, k = 5 × (a − 0 . 8) for 2D-SLMM, k = 5 × (a − 0 . 72) for 2D-LASM, k = 

10 
3 

× (a − 0 . 7) for 2D-SIMM, 

k = (a − 0 . 6) for 2D-LICM and k = 

1 
10 

× (a − 11) for 2D-ICM. 
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D value around 2. From the estimation results in Fig. 3 (a), we

an see 2D-ICM is the only one whose CD values are larger than

. This means that the attractor of 2D-ICM is extremely complex

nd may not be fully described under a 2D coordination system

ven it is a 2D map. The CD simulation results also show that the

roposed 2D-ICM has the better chaotic property compared with

ther 2D chaotic maps. 

.2.4. Kolmogorov entropy (KE) 

The Kolmogorov entropy value is to evaluate the extra informa-

ion needed to predict the trajectories of a dynamic system and

 bigger KE value indicates more information is needed. So the
arger the KE is, the more chaotic and unpredictable the system

s. We use the method in [32] to calculate the KE values of various

haotic maps. The comparison between different maps is shown in

ig. 4 (b). 2D-ICM has the largest KE values compared to other ex-

sting 2D maps and thus its trajectory is the most difficult to be

stimated. The KE simulation results show that the proposed 2D-

CM has the better chaotic property compared with the existing

aps. 

In summary, the trajectory and trend of 2D-ICM are hard to pre-

ict due to its decent ergodicity property. It also demonstrates 2D-

CM has a larger chaotic range, better ergodicity, and more unpre-

ictable chaotic characteristics than these existing 2D chaotic maps
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Fig. 3. Comparison of correlation dimensions of various 2D maps. 

Fig. 4. Comparison of Kolmogorov entropy of various 2D maps. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Algorithm 1 The diffusion process of ICMIE 

Input: The confusion image F and 2 D -chaotic matrices X and Y . 

They are of size M × N. 

1: Rearrange F , X , and Y into 1 D matrices F 1 D , X 1 D , and Y 1 D , re- 

spectively; 

2: sort the X 1 D with an ascending order and obtain the index ma- 

trix x ; 

3: sort the F 1 D with x as a matrix A ; 

4: do the diffusion with the value matrix Y 1 D by Eq. (10); 

5: rearrange D into a 2 D matrix E with size of M × N; 

Output: the diffusion image E. 
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in terms of the assessment and comparative results of LE, CD, and

KE. 

3. 2D-ICM based image encryption and decryption algorithm 

A 2D-ICM based Image Encryption Algorithm (ICMIE) is pro-

posed in this section. Fig. 5 shows the structure of ICMIE. Using

the initial parameters generated by the security key, ICMIE con-

tains two main parts: confusion and diffusion. The confusion part

can shuffle the pixel positions of an image effectively while the

diffusion part can change the pixel values dramatically. In the dif-

fusion part, ICMIE also can spread the changes from few pixels of

the plaintext image to the whole ciphertext image. To balance se-

curity and computation efficiency, in this paper, ICMIE uses two

rounds of confusion and diffusion processes to obtain image en-

cryption results. The users have flexibility to perform more round

to achieve a higher level of security. The decryption process is the

reverse of each ICMIE encryption step. 
.1. Initial conditions 

To withstand the brute-force attack, an image encryption algo-

ithm should have a security key length larger than 100 bits [33] .

ere we use a binary string with 240 bits as the security key of

he proposed ICMIE. This security key is used to generate the ini-

ial conditions of 2D-ICM. It contains 7 parts { a, b, x 0 , y 0 , T, C 1 , C 2 }.

hey are lengths of 40 bits, 40 bits, 40 bits, 40 bits, 40 bits, 20 bits

nd 20 bits, respectively. 

The first 40-bit binary strings in the security key { s 1 , s 2 , ..., s 40 }

re used to generate decimal numbers a 0 , b 0 , x, y and T using IEEE

54 format: 

 = 

∑ 40 
i =1 s i 2 

40 −i 

2 

40 
. (8)

The last two 20-bit binary strings of the security key are used

o generate the integer coefficients C 1 and C 2 . The initial condition

f 2D-ICM can be calculated as follows, 
 

 

 

 

 

 

 

a = (a 0 + T × C 1 ) mod 5 + 16 , 

b = (b 0 + T × C 2 ) mod 5 + 16 , 

x 0 = (x + T × C 1 ) mod 2 − 1 , 

y 0 = (y + T × C 2 ) mod 2 − 1 . 

(9)

.2. Confusion process 

We propose a new confusion method using two chaotic matri-

es to randomly scramble the positions of all pixels in a plaintext

mage. First, 2D-ICM generates two chaotic matrices X and Y . An

xample is shown in Fig. 6 , Matrix S can be obtained by manipu-

ating X and Y into a single matrix S = X ∗ Y . Its index matrix I can

e deducted by sorting S with an ascending order. The pixel loca-

ions of plaintext image P are re-arranged using the index matrix

 . After all the pixels are re-arranged into their new locations, the

onfusion image F is obtained. It can be seen that all pixels of P

re scrambled after a round of ICMIE confusion. 

Fig. 7 shows an image confusion results by ICMIE and the con-

used image F is noise-like and unrecognized. As ICMIE confusion

rocess only changes the positions of image pixels, the histogram

f F is same as the P . 

.3. Diffusion process 

The chosen-plaintext attack is designed to break a cryptosystem

ia investigating how a tiny change in plaintexts affects the en-

ryption results of the cryptosystem. A good diffusion process can

elp an image encryption method to defeat this attack. According

o this principle, ICMIE designs a diffusion process to change the

ixel values of the confusion image F. Its detail process can be de-

cribed as follows. 

The detail diffusion process is described in Algorithm 1 and a

umerical example is shown in Fig. 8 . Matrices X and Y generated
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Fig. 5. Structure of ICMIE encryption process. 

Fig. 6. An example of generating Matrix S and its index matrix. 

Fig. 7. ICMIE confusion:(a) lena image; (b) histogram of (a); (c) confusion image of (a); (d) histogram of (c). 

b  

m  

F  

c  

w  

f

D

y 2 D -ICM are alternately used to generate the index and value

atrices in two rounds of ICMIE diffusion. The index matrix x in

ig. 8 represents the corresponding data positions of X with an as-

ending order. Taking two adjacent pixels in the confusion image F

ith their corresponding index values in x , the pixel value of dif-

w

usion image is obtained by 

 i = 

{ ⌊
( A i + A M×N + | Y i | × ( 2 31 − 1)) mod 256 

⌋
if i = 1 , ⌊

( A i + D i −1 + | Y i | × ( 2 31 − 1)) mod 256 
⌋

if i ∈ [2 , M × N] , 
(10) 

here � . � is the floor operation. 
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Fig. 8. An example of ICMIE diffusion. 

Fig. 9. ICMIE diffusion: (a) the confused Lena image by ICMIE confusion and (b) its histogram; (c) its diffusion image E and (d) its histogram. 
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As shown in Fig. 9 (d), the histogram of the ciphertext image is

uniformly distributed and completely different from the plaintext

image. ICMIE performs two rounds of the confusion and diffusion

processes to obtain the final encrypted image. 

3.4. Image decryption 

Generally, the decryption processes are the inverse processes of

the image encryption. Using the correct key to generate the chaotic

matrices X and Y , the decryption processes of ICMIE will alterna-

tively perform the inverse diffusion and confusion processes in two

rounds and then obtain the recovered image. The pixel values of

the ciphertext image can be first recovered using the inverse pro-

cesses of ICMIE diffusion. The processes can be defined as 

A i = 

{ ⌊
( D i − D i −1 − | Y i | × ( 2 31 − 1)) mod 256 

⌋
if i ∈ [2 , M × N] , ⌊

( D i − A M×N − | Y i | × ( 2 31 − 1)) mod 256 
⌋

if i = 1 . 
(11)

The pixel positions of the ciphertext image will be then processed

by the inverse confusion processes. The original image is com-

pletely reconstructed. 

C  
.5. Simulation results and time complexity analysis 

Converting different types of plaintext images into unrecog-

ized ciphertext images is one of requirements of an attractive en-

ryption method. This section will show several experiment and

nalysis results of ICMIE and its time complexity. 

.5.1. Simulation results 

Fig. 10 shows the different types of images encrypted by ICMIE.

ll ciphertext images including encrypted of all-zero and all-

ne plaintext images are random-like images with uniformly dis-

ributed histograms. All information of plaintext images is well

reserved. These experiment results show the good encryption per-

ormance of ICMIE. It demonstrates that ICMIE can effectively en-

rypt various kinds of images. 

.5.2. Time complexity analysis 

The time complexity analysis is an essential method to evalu-

te the efficiency of an image encryption algorithm. Our experi-

ents are performed in Matlab R2017a in a workstation with Intel

ore i7-4790K CPU @4.00 GHz and 32.0 GB RAM on Windows 7
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Fig. 10. ICMIE encryption results of various types of images. The odd columns show plaintext images and their histograms; the even columns show their ciphertext images 

and histograms: (a) color image; (c) grayscale image; (e) grayscale image with different block intensity; (g) handwriting image; (i) all-zero image; (k) all-ones image. 
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Fig. 11. Key sensitivity analysis: (a)the plaintext image P ; (b) the ciphertext image E 1 encrypted by K 1 ; (c) the ciphertext image E 2 encrypted by K 2 ; (d) the difference 

between E 1 and E 2 ; (e) the decrypted image D 1 recovered from E 1 by K 1 ; (f) the decrypted image D 2 recovered from E 1 by K 2 ; (g) the decrypted image D 3 recovered from 

E 1 by K 3 ; (h) the difference between D 2 and D 3 . 

Table 1 

Encryption times (second) of images with different sizes using various schemes. 

Algorithms 256 × 256 512 × 512 1024 × 1024 

LAS-IES [26] 0.0800 0.3669 1.7526 

LSCM-IEA [34] 0.0772 0.3955 2.4708 

LSC-IES [35] 0.0778 0.3625 1.7425 

ICMIE 0.0362 0.1568 0.7110 
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OS. The encryption time of ICMIE mainly contains two parts: con-

fusion and diffusion. The confusion time is denoted as t c and the

diffusion time is set as t d . Then whole encryption time of ICMIE is

2(t c + t d ) . Here we use different sizes of images in USC-SIPI ’Mis-

cellaneous’ dataset as examples. These images are encrypted 50

times using different encryption algorithms and the average results

are shown in Table. 1 . Compared with other image encryption al-

gorithms, ICMIE has the shortest encryption time. The ICMIE de-

cryption is the inverse process of its encryption. Therefore, ICMIE

has low time complexity. 

4. Security analysis 

4.1. Security key analysis 

For a qualified image encryption algorithm, it usually has a suf-

ficiently large security key space to resist brute-force attack and

it is extremely sensitive to its key variations. ICMIE has a security

key space of 2 240 since its security key length is 240 bits. Next, we

analyze how ICMIE is sensitive to its security keys. 

The key sensitivity analysis can be divided into two parts: the

sensitivity of illegal keys in both encryption and decryption pro-

cesses. The security key is highly sensitive in the encryption pro-

cess when the difference between the encrypted images is abso-

lutely diverse using two slightly distinct keys. In the decryption

process, the key sensitivity is high when the encrypted image can-

not be recovered using tinily changed security keys and the incor-

rectly recovered images are totally different. 

The key sensitivity results are shown in Fig. 11 . There are two

ciphertext images E 1 and E 2 ( Fig. 11 (b) and (c)) that generated

from the same plaintext P ( Fig. 11 (a)) using two security keys K 1 

and K with 1-bit difference. The difference of that these two en-
2 
ryption results ( Fig. 11 (d)) shows the ciphertext images are totally

ifferent. As shown in Fig. 11 (b), the ciphertext image can be cor-

ectly decrypted by the security key K 1 that is the same as the one

n the encryption process. Fig. 11 (f) and (g) show the decryption

esults using other two keys K 2 and K 3 that have 1-bit difference

ith K 1 . As can be seen, the ciphertext image ( Fig. 11 (b)) cannot be

ecrypted using incorrect keys. Fig. 11 (h) shows the difference be-

ween these two incorrect decrypted results. They are completely

ifferent. Therefore, ICMIE is quite sensitive to its security keys in

oth encryption and decryption processes. 

.2. Robustness analysis of noise and data loss 

Different types of noise and data loss are easily occurred in the

ransmission and storage of digital images. The resistibility to the

oise and data loss is a necessary property of image encryption

lgorithms. It requires that the image encryption method can re-

ist the distortion of the ciphertext image. In the ICMIE decryption

rocess, the slight changes of ciphertext images has little effect to

he received images. Fig. 12 shows that ICMIE is robust against 5%

alt&pepper and Gaussian noises. It also evaluates the resistibility

f ICMIE against different levels of data loss at the certain or ran-

om positions. As we can see, ICMIE can decrypt ciphertext images

ith noise or data loss. The recovered images are still recognizable

hen the ciphertext image has 15% data loss. It proves that ICMIE

as a strong capacity to resist noise and data loss attacks. 

.3. Histogram analysis 

The distributions of pixel values can be represented by his-

ograms. The histograms of plaintext and ciphertext images are

hown in Fig. 10 . It can be visually shown that the values of ci-

hertext images are uniformly distributed. They obviously differ

rom the plaintext images. Furthermore, we apply the chi-square

est to quantitatively evaluate the uniformity of ciphertext images.

ts statistic χ2 -value can be mathematically defined as 

2 = 

255 ∑ 

p=0 

(
E p − Z 

Z 

)
, (12)
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Fig. 12. Robustness analysis of ICMIE. The first row shows the ciphertext images with different types of noise and data loss, and the second row shows the corresponding 

decrypted images: (a) 5% Gaussian noise; (b) 5% salt&pepper noise; (c) 4% data loss at center block; (d) 15% data loss at center block; (e) 15% data loss at random block 

positions. 

Table 2 

Chi-square evaluation results of ciphertext images of ICMIE. 

Images Lena Pepper Binary Elaine Cameraman 

χ 2 252.0625 223.6641 223.6641 234.5195 250.8438 
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here E p and Z are the actual number and the expected frequency

umber of each gray level, respectively. A smaller χ2 value means

he more uniform distribution of an image histogram. When the

onfidence level is set to 5%, χ2 
0 . 05 

= 293.2478. If the calculated χ2 -

alue of an image encryption algorithm do not exceed 293.2478,

his algorithm can pass the chi-square assessment. Table 2 shows

he chi-square values of various ciphertext images. All results are

ess than 293.2478. This indicates that the histogram distributions

f the ciphertext images of our ICMIE are uniformly distributed.

herefore, it is difficult for attackers to obtain any valuable infor-

ation from the ciphertext images using the statistic analysis. 

.4. Correlation analysis 

The pixels in a plaintext image often have high correlations

mong neighbouring pixels. The image encrypted by a qualified

mage encryption algorithm should have a low correlation among

djacent pixels. Mathematically, the pixel correlation can be calcu-

ated by 

 U,V = 

E[(U − μU )(V − μV )] 

σU σV 

, (13) 

here U and V are two input sequences, μ is the mean value, σ is

he standard deviation. If these two input sequences U and V have

ow correlations, their correlation value will be close to 0, or else

t is close to 1. 

To evaluate the pixel correlations of the image encrypted by

CMIE, we randomly choose 30 0 0 pairs of adjacent pixels from

oth plaintext and ciphertext images in horizontal, vertical, and di-

gonal directions, respectively. The distributions of these pairs and

orrelation coefficients of pixel pairs in plantext and cipertext im-

ges are shown in Fig. 13 and Table 3 . It shows that pixels in the

laintext image are close to the diagonal line in the coordinate sys-

em, while pixel pairs in the ciphertext image are randomly dis-

erse. Table 3 shows the quantitative results of the correlations

f adjacent pixel pairs and comparison results. The results of the

laintext image are close to 1 while the results of the ciphertext

mages are close to 0. Comparing with the methods of LAS-IES [26] ,

SCM-IEA [34] , and LSC-IES [35] , the C U,V values of ICMIE are closer
o 0 than other schemes. It further proves that ICMIE can break the

trong correlations of pixels in plaintext images. 

.5. Randomness analysis 

To test the randomness of the pseudorandom number generator

PRNG), there are some stringent randomness evaluation methods,

.g. TestU01 and FIPS 140-2 test suites. The former one can adap-

ively perform empirical statistical tests due to its flexible param-

ters, while the later can be used for the accreditation of crypto-

raphic schemes [36] . The software package of TestU01 contains

arious test batteries, such as Alphabit, BlockAlphabit, and FIPS

40-2. Here we use these three batteries as examples to test se-

uences with different lengths by 2D-ICM. Each test obtains a P-

alue. It can be considered to pass the test when the P-value is

ithin a range of [ 10 −4 , 1 − 10 −4 ]. The experimental results are

hown in Tables 4 and 5 . The 2D-ICM sequences pass all sub-tests

f Alphabit, BlockAlphabit, and FIPS 140-2. This means that 2D-ICM

s a reliable PRNG and the sequences of 2D-ICM have excellent ran-

omness property. 

.6. Local Shannon entropy 

To quantitatively measure the information distribution, the lo-

al Shannon entropy (LSE) is applied to evaluate the randomness

f an image encryption method [37] . LSE is used to calculate the

ean Shannon entropy of n non-overlapped blocks that are ran-

omly chosen in the ciphertext image. Its mathematical function

an be defined by 

 n,B r (L ) = 

n ∑ 

i =1 

H(L i ) 

n 

, (14) 

here L 1 , L 2 , ..., L n are n selected blocks with B r pixels in the cho-

en image L . If H n,B r (L ) is in the interval of (h ∗
min 

, h ∗max ) , the ci-

hertext image will be considered as passing the test. The values

f (h ∗
min 

, h ∗max ) can be calculated by 

h 

∗
min 

= μH(X ) − �(α/ 2) −1 σH(X ) / 
√ 

n , 

h 

∗
max = μH(X ) + �(α/ 2) −1 σH(X ) / 

√ 

n , 
(15) 

here �−1 (·) is the inverse cumulative distribution function (CDF)

f the standard Normal distribution N (0 , 1) , μH ( X ) and σ H ( X ) are

he mean and standard deviation of the LSE values of n non-

verlapping blocks of a random image under an ideal condition.
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Fig. 13. The correlation distribution of the neighboring pixel pairs: (a) the plaintext image and its ciphertext image; (b) horizontal direction; (c) vertical direction; (d) 

diagonal direction. 
Table 3 

Correlation coefficients of the plaintext image and its ciphertext image by different schemes. 

Images Lena image LAS-IES [26] LSCM-IEA [34] LSC-IES [35] ICMIE 

Horizontal 0.9710 −0.0023 −0.0013 0.0013 −0.0008 

Vertical 0.9573 0.0019 −0.0023 0.0016 −0.0013 

Diagonal 0.9404 −0.0029 0.0025 0.0026 0.0018 

Table 4 

TestU01 evaluation of the sequences with different lengths generated by 2D-ICM. 

Bits lengths Alphabit BlockAlphabit 

2 15 17/17 17/17 

2 20 17/17 17/17 

Table 5 

FIPS 140-2 results of the sequences generated by 2D-ICM. 

Test S-value P-value FIPS Decision 

Monobit 9999 0.50 Pass 

Poker 27.04 0.30 Pass 

0 Runs, length 1: 2553 Pass 

0 Runs, length 2: 1253 Pass 

0 Runs, length 3 585 Pass 

0 Runs, length 4: 309 Pass 

0 Runs, length 5: 170 Pass 

0 Runs, length 6 + : 163 Pass 

1 Runs, length 1: 2539 Pass 

1 Runs, length 2: 1235 Pass 

1 Runs, length 3: 635 Pass 

1 Runs, length 4: 318 Pass 

1 Runs, length 5: 153 Pass 

1 Runs, length 6 + : 153 Pass 

Longest run of 0: 13 0.50 Pass 

Longest run of 0: 15 0.26 Pass 

Number of bits: 20 0 0 0. 
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The Shannon entropy H ( X ) can be calculated by 

H(X ) = −
n ∑ 

i =1 

P ( x i ) log 2 P ( x i ) , (16)

where X is a set of pixels and P ( x i ) is the possibility of the i th value

x i in X . 

Table 6 shows the LSE results of various image encryption algo-

rithms on 28 images in the USC-SIPI Miscellaneous image dataset.

e  
t shows the LSE comparison results of ICMIE with the algorithms

f Wu [38] , Zhou [39] , Wu [40] , Liao [41] , CMT-IEA [25] , and LSCM-

EA [34] . The results marked in bold indicate that the algorithm

asses the test. It can be seen that the pass rate of ICMIE outper-

orms that of other methods. 

.7. Differential attack 

The attacker can break a vulnerable image encryption method

o detect the change of the ciphertext images from different plain-

ext images. This attack is called the differential attack or the

hosen-plaintext attack. The encryption algorithm can withstand

his attack if it has a good diffusion property. The ability to resist

his attack can be evaluated by the number of pixel change rate

NPCR) and unified averaged changed intensity (UACI) tests. NPCR

nd UACI between two ciphertext images E 1 , E 2 can be defined as

qs. (17) and (18) , respectively [42] , 

P CR = 

∑ M 

m =1 

∑ N 
n =1 A (m, n ) 

MN 

× 100% , (17)

ACI(E 1 , E 2 ) = 

M ∑ 

i =1 

N ∑ 

j=1 

| E 1 (i, j) − E 2 (i, j) | 
255 × M × N 

× 100% , (18)

here E 1 and E 2 are two M × N ciphertext images that are gener-

ted by encrypting two plaintext images with only one pixel dif-

erence, and function A (m, n ) is the number of different pixels be-

ween E 1 and E 2 . 

Wu brought a new standard of NPCR and UACI mea-

ures [42] that are more suitable for evaluating the performance

f image encryption algorithms. In these hypotesis tests, it can

e regarded as passing the NPCR test if the NPCR value of the

ncryption algorithm is bigger than a criteria with a level α as
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Table 6 

The local Shannon entropy results of different image encryption methods with α = 0 . 001 , n = 30 , B r = 1936 . 

File name Wu [38] Zhou [39] Wu [40] Liao [41] CMT-IEA [25] LSCM-IEA [34] ICMIE 

5.1.09 7.901985 7.903354 7.903764 7.904191 7.902127 7.902281 7.902710 

5.1.10 7.902731 7.902443 7.901801 7.902371 7.903402 7.902198 7.902473 

5.1.11 7.902446 7.902756 7.903306 7.900799 7.903402 7.899982 7.902217 

5.1.12 7.902556 7.901526 7.904478 7.903374 7.901906 7.902827 7.903208 

5.1.13 7.902688 7.945630 7.904657 7.904566 7.902825 7.902281 7.902951 

5.1.14 7.903474 7.902945 7.902874 7.903111 7.902340 7.903117 7.901577 

5.2.08 7.903953 7.902356 7.903218 7.901762 7.903327 7.902304 7.902681 

5.2.09 7.902233 7.899853 7.903089 7.905854 7.901765 7.902022 7.902571 

5.2.10 7.900714 7.902654 7.902077 7.902768 7.902748 7.906701 7.902411 

5.3.01 7.902727 7.902647 7.902108 7.901040 7.901772 7.902119 7.903408 

5.3.02 7.903182 7.900474 7.904169 7.900981 7.903328 7.902658 7.903093 

7.1.01 7.902173 7.902634 7.901965 7.902145 7.901305 7.902191 7.901900 

7.1.02 7.900879 7.901634 7.904970 7.902157 7.901578 7.902047 7.903003 

7.1.03 7.902543 7.905423 7.891503 7.900645 7.903099 7.902584 7.902116 

7.1.04 7.901126 7.902125 7.903399 7.904141 7.902607 7.901913 7.902998 

7.1.05 7.903579 7.883653 7.901301 7.900027 7.905305 7.902392 7.903154 

7.1.06 7.901930 7.902356 7.903367 7.901736 7.902695 7.902565 7.902009 

7.1.07 7.903000 7.902364 7.899556 7.900802 7.902896 7.904015 7.903176 

7.1.08 7.903197 7.904456 7.883531 7.900944 7.901632 7.901096 7.902837 

7.1.09 7.902308 7.903012 7.903201 7.905658 7.903173 7.902933 7.902068 

7.1.10 7.899542 7.901598 7.901542 7.893848 7.901524 7.902534 7.903141 

7.2.01 7.902772 7.901989 7.904945 7.904525 7.902454 7.902529 7.902316 

boat.512 7.901908 7.901879 7.903091 7.900712 7.903088 7.901782 7.901920 

elaine.512 7.901122 7.902989 7.901859 7.902030 7.901720 7.902569 7.903219 

gray21.512 7.900170 7.905107 7.901832 7.902149 7.902688 7.902593 7.903359 

numbers.512 7.903615 7.892351 7.902144 7.903579 7.901657 7.902295 7.903379 

ruler.512 7.903265 7.903001 7.901937 7.901428 7.903052 7.904102 7.901889 

testpat.1k 7.902806 7.901681 7.903856 7.903343 7.902752 7.904472 7.903202 

Mean 7.902308 7.901923 7.903764 7.902167 7.902488 7.902611 7.902678 

Pass Rate 18/28 20/28 17/28 11/28 26/28 20/28 28/28 

h ∗
min 

/h ∗max = 7 . 901515698 / 7 . 903422936 . 

Table 7 

The NPCR results of various image encryption methods ( α = 0 . 05 ). 

Image sizes 256 × 256 512 × 512 1024 × 1024 

NPCR ≥ 99.5693 ≥ 99.5893 ≥ 99.5994 Pass rate 

Wu [38] 6/6 18/18 4/4 28/28 

Zhou [39] 6/6 17/18 4/4 27/28 

Wu [40] 6/6 17/18 3/4 26/28 

Liao [41] 0/6 0/18 0/4 0/28 

CMT-IEA [25] 6/6 18/18 4/4 28/28 

LAS-IES [26] 6/6 18/18 3/4 27/28 

LSCM-IEA [34] 6/6 18/18 4/4 28/28 

LSC-IES [35] 6/6 18/18 4/4 28/28 

ICMIE 6/6 18/18 4/4 28/28 

d
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w  

N  

p  
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w

μ

 

i  

t  

t  

r  

w  

N  

c

escribed in 

 

∗
α = 

M × N − �−1 (α) 
√ 

M × N/ 255 

M × N + 1 

, (19) 

here �−1 () is inverse CDF of the standard Normal distribution

 (0 , 1) . An image encryption algorithm can be considered as

assing the UACI test if the simulation value is in the range of
Table 8 

The UACI results of various image encryption met

Image sizes 256 × 256 512 × 51

UACI 33.2255-33.7016 33.3730-

Wu [38] 5/6 18/18 

Zhou [39] 1/6 4/18 

Wu [40] 6/6 15/18 

Liao [41] 0/6 0/18 

CMT-IEA [25] 6/6 17/18 

LAS-IES [26] 6/6 18/18 

LSCM-IEA [34] 6/6 18/18 

LSC-IES [35] 6/6 18/18 

ICMIE 6/6 18/18 
( A 

∗−
α , A 

∗+ 
α ) in 

A 

∗−
α = μ − �−1 (α/ 2) σ, 

A 

∗+ 
α = μ + �−1 (α/ 2) σ, 

(20) 

here 

= 

M × N + 2 

3 × (M × N) + 3 

, 

σ = 

(M × N + 2)((M × N) 2 + 2 × (M × N) + 3) 

18 × (M × N + 1) 2 × (M × N) × 255 

. (21) 

In this test, we randomly select one pixel from each plaintext

mage and change its value by 1-bit to generate another plain-

ext image, and then encrypt both plaintext images to calculate

he UPCR and UACI values for six different image encryption algo-

ithms. The results are shown in Tables 7 and 8 . From the results,

e can see that all 28 images encrypted by ICMIE pass both the

PCR and UACI tests. This means that the ICMIE has superior or

ompetitive performance in defending the differential attack. 
hods ( α = 0 . 05 ). 

2 1024 × 1024 

33.5541 33.4183-33.5088 Pass rate 

4/4 28/28 

2/4 27/28 

4/4 26/28 

0/4 0/28 

4/4 28/28 

4/4 28/28 

4/4 28/28 

4/4 28/28 

4/4 28/28 
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4.8. Analysis of different attacks 

The known-plaintext, chosen-plaintext, and chosen-ciphertext

attacks are three common attack methods for attacker to break

image encryption schemes. For the known-plaintext and chosen-

plaintext, the all-black and all-white images are applied. The

chosen-ciphertext attack can break the encryption schemes using

the decryption of the chosen ciphertexts. 2D-ICM has excellent

ergodicity, hyperchaotic properties, randomness. These properties

can significantly enhance the capacity of ICMIE against these at-

tacks. Fig. 10 shows that the encrypted results of all-black and

all-white images are totally unrecognized. This verifies that ICMIE

has an excellent permutation property. In addition, the histogram

and correlation analysis demonstrates that ICMIE is immune to

statistical attacks. Furthermore, the results of TestU01, FIPS 140-2,

and Local Shannon entropy can prove that ICMIE has strong un-

predictable properties. ICMIE also has passed the NPCR and UACI

tests in resisting the differential attack. Thus, as a symmetric image

encryption algorithm, ICMIE has strong randomness and robust-

ness against the known-plaintext, chosen-plaintext, and chosen-

ciphertext attacks. 

5. Conclusion 

This paper has proposed a 2D chaotic map, 2D-ICM that is the

modulation of infinite collapse maps. The excellent hyper-chaotic

performance of 2D-ICM has been proved in the evaluation of its

large chaotic trajectory distribution, positive Lyapunov exponent

values, big correlation dimension values, and high Kolmogorov en-

tropy values. 2D-ICM has superior chaotic characteristics, better er-

godicity, and a larger chaotic range than state-of-the-art 2D chaotic

maps. We then designed a 2D-ICM based image encryption algo-

rithm, named ICMIE. Owning to the unpredictable properties of

2D-ICM, ICMIE can encrypt various kinds of images with a high se-

curity level and perform better than several competing image en-

cryption algorithms. ICMIE can also withstand various attacks in-

cluding noise, data loss, and differential attacks as shown in the

experimental results. 
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